RGB-D salient object detection: A survey
نویسندگان
چکیده
منابع مشابه
Salient Object Detection: A Survey
Detecting and segmenting salient objects in natural scenes, also known as salient object detection, has attracted a lot of focused research in computer vision and has resulted in many applications. However, while many such models exist, a deep understanding of achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. We situate salient ob...
متن کاملRGB-D Salient Object Detection Based on Discriminative Cross-modal Transfer Learning
In this work, we propose to utilize Convolutional Neural Networks (CNNs) to boost the performance of depth-induced salient object detection by capturing the high-level representative features for depth modality. We formulate the depth-induced saliency detection as a CNN-based cross-modal transfer problem to bridge the gap between the " data-hungry " nature of CNNs and the unavailability of suff...
متن کاملLocal Background Enclosure for RGB-D Salient Object Detection - Supplementary Results
The purpose of this supplementary material is to examine in detail the contributions of our proposed Local Background Enclosure (LBE) feature. A comparison of LBE with the contrast based depth features used in state-of-the-art salient object detection systems is presented. The LBE feature is compared with the raw depth features ACSD [1], DC [3] and a signed version of DC denoted SDC on the RGBD...
متن کاملLearning Graph Matching for Object Detection from Rgb-d Images
We propose an optimization method for estimating parameters in graph-theoretical formulations of the matching problem for object detection. Unlike several methods which optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach aims at improving performance in the more general task of object detection. In our formulation, similari...
متن کاملFrustum PointNets for 3D Object Detection from RGB-D Data
While object recognition on 2D images is getting more and more mature, 3D understanding is eagerly in demand yet largely underexplored. In this paper, we study the 3D object detection problem from RGB-D data captured by depth sensors in both indoor and outdoor environments. Different from previous deep learning methods that work on 2D RGB-D images or 3D voxels, which often obscure natural 3D pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Visual Media
سال: 2021
ISSN: 2096-0433,2096-0662
DOI: 10.1007/s41095-020-0199-z